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Abstract

Results and analyses of computer simulations of the beam-beam interaction
in the "Tevatron" pp collider are presented. Long time simulations of this
nonlinear two dimensional {2-D) interaction are undertaken in a search for
beam blow-up due to "Arnol'd Diffusion". No large blow-up is seen in simula-
tion of 20 minutes Tevatron time (60 million turns). Limits on the possible

magnitudes of emittance increase are presented.
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Introduction

In the Fermilab "Tevatron I" project, it is planned that
bunches of protons and antiprotons will collide in the 1000 GeV
superconducting ring, providing high energy particle-antiparticle
collisions. When bunches cross each other, single particles are
affected by highly non-linear forces generated by the beam bunch
moving in the opposite direction.'

It has been suggested that such motion could be unstable.
The motion of a particle with a periodic, non-linear, two-dimen-
sional (2-D} kick could diverge because of an instability process
called "Arnold Diffusion". This phenomenon can occur in the ab-
sence of external noise and requires at least two degrees of free-
dom, ?

Arnold Diffusion is a slow process, with a rate depending
upon the linear beam-beam tune shift Av, but still possibly ser-
ious enough, where it exists, to remove particles from the anti-.
proton (p) beam in a time period shorter than the required p stor-
age time. This effect could endanger the Tevatron I project.

The theory of "Arnold Diffusion" is incomplete, Arnold
has demonstrated that a particular nonlinear, 2-D, time dependent
dynamical system has an instrinsic instability dependent on the
strength of the nonlinearity.® The instability causes particle
orbits to wander throughout phase space. An hypothesis exists
that any 2-D, nonlinear, time dependent, hamiltonian system should

exhibit "Arnold Diffusion". This hypothesis has not vet been proven.
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The beam-beam interaction is such a system and therefore
could exhibit this instability. We have undertaken long-time
computer simulations to find evidence for Arnold Diffusion in
the beam-beam interaction. We have simulated up to 20 minutes
of real Tevatron time (60 million turns) and see no significant
evidence of such instability; the motion is stable on that time
scale,

The simulations have been performed by use of the Fermilab
Cyber computing system with a program originally prepared by

Ruggiero"

and modified by Riddiford. In the following sections we
outline the characteristics and the results of these simulations.

Egquations of Motion

We consider here only the "weak-strong" case where a test
particle in a "weak" beam periodically crosses a "strong" beam.
The motion of the particles in the strong beam is not affected
by the presence of the weak beam, therefore their charge distri-
bution can be assumed to be constant in time.

The equations of motion of the test particle are

x" 4+ Kx(s) X = _s%éﬁx F(x,y) Gp(s) x
p X (1)
v+ RKs) v = T ey s (s) y

by

where x and y are the displacements of the particle motion from

a reference orbit (x,y=0), Kx and KY are the lattice focussing

-
functions and the right hand sides of equations(l) represent the
interaction with the strong beam where 6p is a periodic¢ delta-

function of period C.
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Equations (1) do indeed describe the motion of a particle
in the proton-antiproton colliding beam system at Fermilab, if
the following assumptions be taken:

(i) . The two unperturbed betatron tune Vo and vy do not
depend on the particle momentum. This requires chromaﬁicity
cancellation in both planes over a reasonable momentﬁm range.

{ii). The lattice parameters at crossing (a*, B*, Y*) do
not depend on the particle momentum over some appreciable range.,
This might require even higher order corrections than those re-
quired to flatten the chromaticity.

(iii). The disperson ét the crossing point vanishes over
the same momentum range. There is no constraint on the deriva-

tive of the dispersion, however,

(iv) . Both beams are bunched and the interaction is head-
on.

(v). The bunch length in the strong beam is small compared
to B*. In this case it is possible to represent the interaction

by a lumped kick; that is, the interaction has infinitesimally
small duration which justifies the periodic delta-function at the
right hand side of equations(l).

With these assumptions, which approximate physically prac-
tical conditions, the interaction bhetween the two beams is inde-
pendent of the particle momentum and therefore of synchrotron
oscillations. In this case one only requires the integration of
equations (1) to calculate the motion of a test particle in the

"weak" beam,
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Our approach is static; that is, we are neglecting all
sources of noise which would cause the interaction to fluctuate
(gas scattering, intrabeam scattering, power supply noise, gquantum
fluctuations, etc.).

The proton beam is assumed to have a round, gaussian shape,
providing a non-linear force represented by the function

F(z) = (1. - DEXP(-2))/z (2)
with

2 =75 (x> + o) (3)
where X is the horizontal co-ordinate of an antiproton and y the
vertical co-ordinate, with the co-ordinates centered upon the pro-
ton beam, and where the units are millimeters.

The root-mean-square size of the proton beam can be found
from (3); 75. = 1./ (202;; so that o= 0.08165 mm.

It has been proven that if a; = a; and V, = Vy and F (x,y)
has a symmetry property (See Apvendix A), equations (1) can
be integrated once, which reduces the number of degrees of freedom
from two to one. According to the KAM theorem,® if there be only
one degree of freedom and the nonlinearity be small encugh, the
non-linear system cannot be unstable,

The Tevatron i parameters are well described by equations (1)

and the above restrictions, except that Ve need not equal v (Equa-

yl
tions (1) have not been shown to be integrable if Ve # vv.)

Our computer simulations contain two 20 minute real time (60

million turns) Tevatron simulations: one with vV, = vY which meets

the integrability conditions, the other with Vo # Ve
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Computer Simulation Technigue

A set of test particles {usually 100) are generated with
initial co-ordinates: positions (¥,y) and velocities (x',y'),
generated randomly following gaussian distributions in each.

Those distributions are centered at x=y=x'=y'=0 with dimensions
matching the "strong" beam. During generation of initial co-
ordinates, co-ordinate sets with a co-ordinate larger than three
gaussian standard deviations are rejected and new ones generated,

Since there is a "waist" at the interaction region (ax=ay=0),

the particle "emittances" are

2
_ X * 2
EX_B_* +Bx(x)
X (4)
2
* 2
e, =L + 8, (v")
Y 8 Y
Y
In these simulations we have chosen €_| = ¢_| and
X' RMS Y ' RMS
* *
Bx = BY  which is equivalent to the condition that both strong

and weak beams are "round", as should be true for Tevatron I.
Only one interaction per turn (revolution) is calculated.
The simulations have two steps per turn:
l) a linear ;;ansformation around the ring;
2) a non-linear kick due to a "beam-beam" interaction.
The linear transformation is modified to include the
linear part of the beam-beam interaction. The kicks in the anti-

proton velocities are found from:



4mAY (42a)
Ay' = = —— F vy
BrY

where F +1 for small amplitudes X,y and where BTX and BTY are

the "before” betas explained below (in the limit Av > 0).

Figure 0, Symmetric Velocity Kicks.

The initial distributions of position and velocity were
taken at A. The first velocity kick was one-half the strength
given in (4A), and thereafter, when statistics were done on the
positions and velocities, one-half of (4A) was subtracted from the
velocities, since (4A) takes the antiproton from C to B. |

Taking K = - 4 ﬁAv/Bas the velocity kick for either x or y
in (4Aa), K/2 is applied at the beginning of each turn and K/2 at
the end, so (for each plane):
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where the symbols ¢ and s stand for cos (27v) and sin (2mv) and where
the unprimed quantities are considered before interaction
and the primed quantities after. (We use the linear approxima-
tion that F = 1.) We desire that the tune of the "after” matrix
be matched to the nominal value V, = v' and that 8' ("after")
be set to the nominal matched value of 2 meters,
The "before" matrix parameters v, B, a are found by solving

the equations

cos(2nv) +§ gsin (27v) = cos(2uu0) (6)

Bsin (2=xv) = B'sin (2wy,)

with separate equations for x and y, where B; = B§ is taken but

vi # v; is allowed. With this transformation, the "linear part"”

of the moticon, the motion for small x, is matched to the linear

component of the strong beam. With double precision the deter-

minant of the "before" matrix is within 10”28

<
that the system is conservative for ~1028 turns.

of unity, indicating

Calculation of the Interaction Form
A. Single precision. |
A great deal of computer time can be saved by tabulating
interpolation coeffiéients of the function (2) in one operation

at the start of the run. The computer program evaluates F accord-

ing to



g; (t) 0 <z < 30
Flz) = {

l/z ‘ 30 < z (7)

where £t = z - Zi’ zi = (i-1)Az defines 12,000 intervals of

length Az = 0.0025 and where the l1/z approximation is adequate to
13 significant digits.

The functions

gi(t) = a,. 2

i + bit + cit

+oa.t

1
are cubic interpolations whose coefficients ar bi' Cyr di for each
interval are determined by requiring:

2. gi(Az) = F(zi + Az)

d d (3)
3. 3 gi(AZ/Z) = 3z F(zi + Az/2)
4, F(zi + p) - gi(p) = - F(zi + Az/2) - gi(Az/z))
where p = T%ﬁ Az,

All integer values of k from 10 to 40 were tested and k = 35
was chosen which gives the smallest maximum error and with posi-
tive and negative errors balanced. The top graph in Figure 1 shows
that the approxima%ion is always correct to 12 decimal digits, and
to 13 for z greatef than about 2.

A computer program evaluating F as in (7) and (8) takes only a=-
hout 62% of the time that evaluating the function F{z) = (1 -EXP(-2))/Z

takes while giving the same accuracy as the single precision function.
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B. Double precision.

For double precision calculations the above interpclation
procedure is not adequate. For z > 0.05 the function F(z) =
(1 - EXP(-2))/z is caiculated directly using double precision
operations, functions and constants. For z <0.05 a thirteenth
order polynominal is used. This obtains F to 28 significant
digits.

Repeatability Experiment (Double Precision).

To estimate the accuracy of anti-proton orbits, four parti-
cles (X = Y = % 5, o, % G, 20; X' = Y' = 0; O = 0.08165mm) are
simulated on the computer 60 million turns forward and then re-
turned back to their initial starting positions. This requires 9
hours total CPU time. Since anti-protons in the "Doubler' complete
50,000 turns each second, 60 million turns is equivalent to 20
minutes real-ring-time. The computer is less efficient with only
four particles, and so the CPU time is 3.2 times the real ring time
per particle.

Since d; = d; = 0, the reverse run only needs to change the
signs of the off diagonal elements (5) and the function F (see (1)
and (2)). During the reverse run, positions and velocities are com-

pared with the forward run values. Since %X? + B(X‘)2 is invariant

in a linear orbit, the error is estimated by finding the base 10

log of *J(AX)2 + (BAX')2 where AX and AX' are the differences in
X and X' between the forward and backward runs. Since X = Y, only
X values are shown in Figure 1A. Orbit positions should be reliable

to 14 decimals.
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This test guarantees the accuracy of our computer simula-
tion for at least 40 minutes real time in beam-beam, storage ring
situations.

Cases Run; Double Precision

Since we want to explore the long-time stability of a storage
ring containing both protons and antiprotons, we choose two regions
of tune space where there are large resonances which could be ex-

pected to enhance instabilities:

Case A: v_ = v_ = 0.245 ' Av_ = Av__ = 0.01 on-diagonal resonance
X y X y (10)
Case B: v_ = 0.245 v, = 0.12 , Avx = Av_ = 0.01 off-diagonal
x 4 Y resonance

Emittance statistic calculations are made after the odd-thousands
of turns (1000, 3000, 5000, ... ) in groups of 200,000 turns and
supergroups of 10 groups. Thirty supergroups were run for a total
of 60 million turns or 20 minutes real-ring-time. The 60 million
turns required a little under 90 CPU hours. 100 antiproton orbits
were calculated, so these runs (2.64 CPU seconds/real-ring~ second
for éach particle) were more efficient than the repeatability runs
(3.2 CPU seconds/real ring-second for each particle).

For example, Figure 2 shows emittance statistics for a 64
second simulation oh the 1/4 resonance. Each bar summarizes 100
emittance values calculated over 200,000 turns (4 sec.). The top of
the bar is the maximum value, the bottom is the minimum value. The
line near the center is the best straight line fit to the 100 values.
The line across the 16 bars is the best straight line fit for the

full 64 sec, run.
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Figures 3 and 4 contrast the statistics of rms beam emit-

tances with resonance ( Ve T vy = 0.245) and with a 1/6 resonance

(vx = vy = 0.162), in 12 second, single precision simulations.

XMIT, YMIT (x and y emittances) and

2

VXMIT? + YMIT (11)

RMIT

are compared.

In Figure 4 we see YMIT and YMIT vary oppositely and their
rms sum RMIT remains nearly constant. Figure 3 shows much larger
fluctuations, particularly in RMIT. We believe that to be due
to the large distortions in particle trajectories due to the 1/4
resonance.

Also, in Figure 2, we notice an immediate increase in emit-
tance from an initial value of 0.0172 mm-mrad to 0.0237 mm-mrad
in less than 1000 turns. This "increase" is believed to be caused
by a non-linear mismatch. As explained above, v and B are adjusted
to match vanishing~amplitude orbits and initial particles are
placed within a gaussian distribution appropriate for a linear force.
Large amplitude orbits are unmatched, and this mismatch of resonant
orbits generates tﬁe initial change in emittance.

Fluctuations in emittance are partially due to statistical
fluctuations (only 100 particle orbits) and these statistical fluctua-—
tions are enhanced by the large variations in orbits near resonance.

We observe that the calculated emittance presented above,

YMIT = 6 Yiy - )2 (y' - §')2 (12)
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is equivalent to the "95%" emittance of a bigaussian distribution

2

=]

£

where o is the rms beam height, and B* the "beta-function" at
the interaction point.
Case A: Ve = vy = 0.245, Av = 0.010.

Table I gives the emittance data after every two million
turns up to 60 million turns or 20 minutes real-ring-time. After
the first row, the values are cumulative, incorporating all the
previous data (details are given in Appendix B).

Figure 5 displays the 30 average values for RMIT, each one
the average of 1000 emittance values during 2 milljon turns. The
last value for R in Table I is shown on Figure 5 as the horizontal
dashed line.

Figure 6 shows the cumulative estimates of the time in days
that it would take to change the R emittance by a factor of two.
These values are inversely proportional to the cumulative slope
estimates of the best straight line fit from t = 0. After the
computer run is past 10 minutes real-ring-time (30 million turns)
the estimates are all more that 20 days for the RMIT value to de-
crease to zero. !

Figure 7 shows the area of tune of the 1/4 resonance runs.
All lines of the form mx + ny = q where m,n,qg are integers and

where the order ( |m| + |n| ) is less than or equal to 13 which

cross the area are shown. Other than the 2nd ocrder line vy=vx,
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there are five 4th order lines, two 6th order lines, six Sth

h

order lines, four lOth order lines-and ten 12t order lines.

Case B: Ve = 0.245, vy = 0.12, Av =~0.01.
Table II gives the emittance data at intervals of two
million turns, similar to Table I. The bottom two graphs of
Figure 8 display the 30 average values of the x-emittance (XMIT)
and y-emittance (YMIT), each one the average of 1000 emittance
values during the two million turns. Straight line fits to the
data are shown. The top graph of Figure 8 gives the ratio of
cumulative slopes of the x-emittance divided by the y-emittance
which is equivalent to %ﬁ?//%%g . The appearance of an increase
in € matched by a decrease in Ey suggests some resonance influence

which we have not been abkle to identify precisely.

In Figure 9 the region of tune (0,245 < vx< 0.255, 0.12 <
vY < 0.13) for Case B is shown. All resonant lines of order less

th th

than 13 are shown. There are single 3rd’ 4=, 5 and Gth order

resonances, two 7th crder resonances, single Sth, 9th and loth

order resonances, three llth order resonances and three 13th

order resonances. Particle orbits with small amplitudes are con-
centrated near vx = 0.255, Vy = 0.13. Larger amplitude orbits are
at lower tune valueSs concentrated near the diagonal Avx = Avy.
Figure 10 shows the cumulative estimates of the time in days
that it would take to change the x-, y- and R-emittances by a factor

of two, found from the inverse of the slopes. After about 12 minutes

real-ring-time simulation, the slopes indicate a doubling time of
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greater than two days. The y-emittance shows a negative '"doub-
ling time" indicating a decreasing emittance. This value of
doubling time for this case is an order of magnitude smaller than
in the previoﬁs case of a resonance on the '"diagonal" ( v_ = v_).

X Y
This suggests that Case A is more stable than Case B.

Single Precision Runs

The same cases (A and B) were also run in single precision
simulations, where ten supergroups are needed to complete the 60
million turns or 20 minutes real-ring-time. Each supergroup 1is
6 million turns or 30 groups of 200,000 turns. Each supergroup
ran a little over two CPU hours, so that the complete run regquired
almost 22 hours.

The matrix calculations take about 1/3 of the CPU time, the
other 2/3 being required by the cubic interpolation of the inter-
action function F. Quadratic or even linear approximations can be
used and will speed up the runs, but accuracy will suffer and the
number of intervals required will increase.

Figure 11 explains why we went to double precision. The re-
peatability.experiment (similar to Figure 1 for double precision}
showed errors in the orbit positions comparable with the positions
themselves after 20'million turns.

Table III compares the single precision results with the
double precision results. The Case B run was stopped at 30 million

turns (10 minutes real-ring-time).
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The statistics used for single precision runs were dif-
ferent from that explained above for the double precision runs,
50 the doubling times do not use the same data, and so should not
be precisely the same. In single precision runs emittance values
were taken at the even thousands (0, 2000, 4000, ...) which meant
counting the emittance at the end of each group twice.

After each of the 30 double precision supergroups, a com-
parison was made of ten x-values and ten y-values with the single
precision values. On the average the case A run differed by more
than 1 in the Sth decimal at two million turns and in ﬁhe 3rd
decimal at 60 million turns. The Case B run was only slightly
worse.

Both single and double precision cases yield the same rate

of change for Case A and the same magnitude of change for Case B.

Conclusion

We have made two long-run simulations of the beam-beam in-
teraction for a geometry which we believe to be a good approxima-—
tion of Tevatron pp colliding beams.

In Case A ( Ve =V, = 0.245) we find stability. Our result is

Y
that it requires ~20 days for the beam emittance to double

/
and this result is consistent with the theorem on integrability of
this system (Appendix A).

In Case B Vo # vy) we find that the weak emittance can

change by a factor of two in two days and this result is statisti-
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cally significant (Appendix C). This may be "Arnold Diffusion",

but it is a small effect for pp parameters.

We plan to extend these runs to 120 to 200 million turns

(40 to 60 minutes real-ring-time) to set further limits on "Arnold

Diffusion". We also hope to explore other beam-beam geometries,

such as collisions of elliptical rather than circular beams, and

also the effects of 'tune modulation',
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Appendix A. Integrability Theorem

Let us write the equations of motion (1) in the form:

x" + kx(s) X Exe(x,y)6p(s) (1a)
y" o+ ky(s) y = EyFy(x,y)ép(s)

Theorem: If the following conditions be satisfied:

Vo= and a* = g* (2A)
X y X Y

then there exists an infinite wvariety of strong beam charge distri-

butions for which the original equations of motion {(lA) admit at

least one integral of motion.

Proof: The interaction force can be derived from a potential func-
tion:

. _ U __au
Exe(x,y) = e and EyFy(x,y) = 3y {3A)

The pair of equations (1lA) can then be obtained from the following

hamiltonian:
p2 + p2 kxx2 + k y2

q = 5 Y 4 5 y + U(x,y)Gp(s) (4A)

This is a non-autonomous system with two degrees of freedom.

The independent variable is s; the canonically conjugate wvariables
are:

X, p. = x' and v, p_. = y"' (54)

According to Maxwell's equations, the potential U is related
to the charge distribution p{x,y) in the strong beam by the Poisson's
equation:
V2U(x,y) = p(x,y) (6R)
Let e = 2ﬂvx and “y = 2ﬁvy be the betatron phase advances in

the two planes between two consecutive crossings. Whether there be
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only one or more than one interaction per revolution is immaterial
here, provided that the lattice repeats identically between crossings.
It is well known that in the limit Ex = £y = 0 the position

and angle of the test particle after the n-th crossings are given by:

X =" B* cos(nu + GX)
= v ia* cos(nu + 8 ) + 51n(nu + 3 )

and similarly for Yo and yﬁ. In egquations (7A) Ex and 6x are two

(738)

constants of motion. The first one measures the amplitude of the
motion.

Let us make the following change of variables:

(x,x";y,y") (r,pr:e,pe) (8A)
old new
with
X = rs; cos B and y = rB; sin 6 (9a)

The generating function for this transformation is:

S(8,xr:p,,p,), xp, + yp
Xy X vy

x'\’rB; cos 06 + y'\’rs; sin 9 {10Aa)

from which we derive the new momenta:

[}

P = - o5 and p_= 23 (11A)

Py is similar to angular momentum:
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{123)

We calculate Pg at the interaction point after n crossings
in the limit Ex = EY = 0. Inserting (7A) and similar eguations
for y,y' into (12A) we obtain

Pop =1,€x5y sin (Gy - SX) (13a)
which i1s a constant, an invariant of motion.

Let us see now the effect of the kick with Ex and EY # 0:

Axh = Ay =0

Ax!
n

I
A
|
M
-
=
g
g
I

EYFY (an Yn)

We have:

. B* B*
= _x L _X t
Aan B§ ynAxn B; anyn
B* Ei
- X -
_JB_;; Y8 Fy (X v) 3% Xy Ty Fpeyy)
’B* ,B*
= . X oU _x au
E; yn(gf)n + BX xn(gi)n

After the transformation (9A) is applied:

U= U(x,y) » U({r,9)
It is obvious that if 3U/36 = 0, i.e. the potential depends only

on the "radial" coordinate r,
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then Apen = 0, that is Py remains a constant of motion with the
beam-beam interaction.

From (94) we obtain:

x2 2
r=§;+%;:
X Y

If U be a function of only this variable, then we have from

(6A) that all charge distributions satisfying the equation

a2 U 1 du
p(x,y) = 4( + L{) + 2(5p + 2) 2= (L4A)
BXZ 42 BE B* dr

with any arbitrary U=U(r), satisfy also the reguirements of the
theorem.

In particular if B; = B; and the strong beam is "round", as
is approximately true for the pp-project at Fermilab, -then a
gaussian charge distribution in the strong beam is consistent with
the assumptions and the theoremn.

Discussion .

As we have already mentioned, equations (lA) represent a system
with two non-autonomous degrees of freedom. This has been conjec-
tured to be a sufficient and necessary condition for the system to
be affected by Arncld diffusion: an instability caused by the
intersection (not over-lapping) of the non-linear resonances in

the four-dimensional phase space.



Bet we have just proven with the previous theorem that if
the conditions (2A) and (14A) are satisfied, the system can admit
one integral of motion, Pg given by ecuation (12A). Therefore
equations (lA) can be integrated at least once. One can eliminate
8 as a variable, and the motion of the test varticle can be re-
duced to one degree of freedom. In this case the KaM theorem5
insures that for small values of the perturbation {EX and Ey)
the motion is bounded by stable trajectories.

In this case (p8=constant), the resonances in the four dimen-
sional phase space never intersect with each other. The question
remains whether this is generally true or requires conditions (2A)

and (14A). If this be true, then the beam-beam interaction

cannot exhibit Arnold diffusion.
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Appendix B. Best Straight Line Fit of Emittance Values

In this section we describe our method of calculating the slope
from cur sets of emittance values.

As shown in the "BAR" part of Figure 12, 100 emittance values
are taken at the odd thousands of turns (100, 300, ..., 199,000).

The SLOPE is found from
Ixy - (Ix) (IZy)

SLOPE = (1B)
sz—(fxlz
Scaling each bar to 0<x<1, SL, defined in Figure 12, was found
from:
100,000 SLOPE = SL/2 = DY (2B)

To find the best straight line fit to the ten (N=10) "BARS"

making up a "GROUP" (see Figure 12)

x =%, - % +1-9:2 5=1,2,...,100
* 100 (3B)
- .3 -0.5
y =y; * 8Ly (=% + Sypp)

and the overall AY, always using a zero x-average was found from

1
ZXy
ay = Y100 70 (4B)
2 1 5 2
100

where the numerator’is made up of ¥ sums like:

100 . .
1 = _,.j=0.5 [- _ 3—0.5]
100 jil (% —ht=355 ) [Y1+STy (Fe+=155) (5B)
and the denominator sums all the points:
100N .
1 2 1 N, j - 0.502
00 X = 7105 .- 3t o5 ) (6B)
j=1
Since: k
nee: i = %k (k + i) (7B)
1
kK2 x
£if =7 [L+ % (3 + 2x)] (8B)
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{5B) becomes:
- 1 1, ,- 1 1
11 4 rel_ 1
(x; - 7~ 7500 vy *+ 5Ly [-5- 555 1)
- 1 1 - 1 1 101
+ [xi 2 700 t Y1 TSk (-3- 3090 300
(1 + 100 - 203)
+ SL; “150 . 100 - 6
- - 1 - 0.0001
RS T T 17 SL; (9B)
The sum (6B) becomes:
100N .2 . 2.
1 N et g dicost 3% -5+ 025
100 .- 3 100 2
i=1 10
3 2
N N N N 1. N
= — + + - (7% + —%) % (100N + 1)
T 72007 7. 148 Too * .8 2
, N(1 + 100N (34+ 200) _ 3 - x . 1074 /12 (10B)
6 + 10
The gquantity AY in (4B) becomes:
N 5
I (y; - X; + 0.16665 - 10° - SLOPE,)
py = =2 . - (11B)
(N® - 10 7")/6

The supergroup,calculations are very similar, except the sums

are over 1000 values instead of 100.

replaced by AY/(1/2)=2AY

X

Y

The supergroup slope can

The slope SLi in {3B) is

so that:
_1 j - 0.5 .
xBi 5 * * 1000 i =1,2,...,1000
1 j - 0.5
yB; + 2AYi (-—~2- + L) (12B)

1000

be found from:
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L
)X (¥, * Xx. + 0.1666665 +« AY.)
= 1 1

~ (13B)
v, L2 - 107%) /6

To find the doubling time YMIN, the supergroup slope is found

by dividing §Y by the number of minutes in L/2 groups. Since each

group is 2/3 minutes, the doubling time is found from:

_ _8Y
YAV"_L_.

* YyIn (14B)

or

MIN 3 . &Y (15B)
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Appendix C. The Statistical _Significance of the Calculated Slopes

P.R. Bevington6 gives an estimate for the error in the slope

(2B) to be:
2 2
oy, = N s 5 (1C)
NIxT - (IZ%.)
i
where:
2 1 _ _ V2
s = ﬁ——:--z- % (yi a bxi) (ZC)

Emittance values were printed, and to do the sum in (2C) in-
cluding all 30,000 emittance values would require days of keypunching.

The above expressicon for d, can be shown to scale as

0y = 1/VN {3C)

as the number of points (xi,yi) is increased, if the Yi follow a
normal distribution about the linear fit. We can find the error

for a subset of the 30,000 values and scale to find the error for

the full set. 1In order to check this scaling, 3000 wvalues of RMIT
(Case A) were keypunched {(at turns 9000; 29,000; 49,000;...59,969,000;

59,989,000) and o, was found to be:

b

oy = 4.49 x 1076 Eﬂigfﬂg (3000 data points, (4C)

~ RMIT, Case. A)

Then every tenth value was used for a series of ten sums (1C)
and (2C) using only 300 values, starting with the 1lst wvalue, then
for the next set starting with the 2nd value, then 3rd,...10th
value. The average of the ten estimates of DS using only 300 points

was:
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=1.42 x lO—5 n'lin_l (average of 10 sets of 300 data (5C)

b
points, RMIT, Case A)

To check the scaling (3C), multiply (4C) by v10:

6 -5 mm-mrad

= 1.42 x 10 min {6C)

V10 x 4.49 x 10

The estimate for the slope error Ty using all 30,000 emittance

values is therefore

4.49 x 107%//T0 = 1.42 x 107° momrad (30,000 data (7€)
points, RMIT,
Case A)
Any slope within the band +(7C) is expected to be statistically

indistinguishable from a zero shape.

In order to compare (7C) with the doubling time of -54 days

on Table I after 60 million turns:

R = 1.42 x 107% at (8C)
av
At = 0.0336/1.42 x 10°% = 23662 min or
16.4 days (9¢c)

Any doubling time longer than 16.4 days is expected to be statistic-

ally indistinguishable from an infinite doubling time (or a zero

4

slope).

Since 54 days is almost four times longer than 16.4 days, our
data for R-emittance (Case A) is statistically indistinguishable
from a zero slope.

For Case B the numbers were:
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¢p (300 values) op (30000 values)
" mm-mrad/min mm-mrad/min At
-5 -6
X 1.319x10 1.319%10 12 days
y  4.605x107° 4.605x10" " 29 days
R 1.049x107° 1.049x107° 20 days

The doubling times on Table II after 60 million

5 to 9 times shorter than the *At band.

Table II
Doubkling
Time

1.3 days
-5.4 days (10Q)

2.7 days

turns are all from

So our data on Table II show (statistically) significantly

neon-zero slopes.

As further runs are made, all emittance values will be made a-

vailable for a more accurate estimate of Ub

in (1C) and (2C).
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"TABLE I, Emittance data for Case A; <
Cumulative values, '

Million
turns

o o &M

10
12
14
16
18
20

X
av

0.0237166
0.0237070
0.0235984
0.0237149
0.0237005%
0.0237104
0.0237C44
0.0237082
0.0237050
0.,0237085
0.0236997
0.0237051
0.0237059
0.0237055
0.0237051
0,0237058
0.0237026
0.0237030
0.0237054

0.0237024 7

0.0237033
0.0237033
0.0237033
0.02370L4

0.0237034
0.0237011

. 0.0237035

0.0237025
0.0237020
0.0237020

Doubling

Tinme
(days)

0.3
1.6
-0.8
0.8
-2.0
2,2
-12.
28.
21,
6.3
=3.5
~170.
0.

Y&‘V

0.0235805
0.0235929
0.0236972
0.0236935
0.0237146
0,0237039
0.023705L

0.0237028

0.,0237059
0.0237017
0.0237084
0.0237027
0.0237036
0.0237060
0.02370%
0.0237015
0.0237045
0.0237047
0.0237013
0.0237028
0.0237011
0.0237020

-+ 0,0237019

0.0237024
0.0236993
0.0237018
0.0237003

C.0237012 .

0.0237018
0.0237022

Y

Deoubling

Time
(days)
-0.3
-2.5
1.3
-3.1
6
3.5
3.9

R&V

0.0336119
0.03361 44

0.0335123
0.0335211
0.0335278
0.0336288
0,0336267
0,0336257
0.0336277
0.033%277
0.0336267
0,0336262
0.0336272
0,0336286
0.0336263
0.0336256
0.0335256
0.0336253
0.0336249
0.0336243
0.0336241
0,0336246
0.0336244
0.0336232
0.03358224
0.0336226
0.0336230
0.0336226
0.0336226
0.0338229

29

YV, = 0.2k5; A= 0,010

Doubling

Tine
(days)

-1.5
1.9
-5.7
2.0
1.3
1.8
4.1
6.7
7.1
9.2
22.
50,



0.029%076

TiILE Il Emittance.data {for Case B. x = 0.245; y = 0,120 = 0.010
Curulztive values, ) ' 30
Real
Ring Millionm Doubling Doubling Doubling
Tixe Turns X Time Y Tine R Tine
(nin) Y (days) v (days) Y (days)
< 2 0.0227520 0.2 0.0192872 0.4  0.0298:09 0.1
1L & 0.0227605 0.7 0.0193705 0.1  0.0299023 0.1
2 6 0.0227589 i.5 0.0193518 0.1  0.0299149 0.3
2§ 8 0.0227293 0.3 0.0193824 0.6 0.0298353 -0.8
B 10 0.0227243 0.4 0,019364 -0.3 0.0258592 ~0.4
4 12 0.0227275 -1.3 0.01%308% ~0.,2 0.029837% ~0.4
b3 14 0.0227243 2.0 0.0193784 -0.2  0.0258258 -0.5
5§ 16 0.0227431 2.8 0.0192687 -0.2 0.,0298235 0.6
4 18 0.0227731 0.5 0.01626L6 0,3 0.0298419 -2.5
&< 20 0.02276L9 1.4 0.,0152598 -0.4  0.0298323 -1.5
74 22 0.0227764 0.8 0.0192621 0.5 0.0298447 37,
8 24 0.0227832 0.6 0.0192630 ~0.7 0.0298550 3.4
88 77 25 0.0228057 0.5  0.0192650 -1.0  0.0258587 1.5
9z 28 0.0228304 0.4 0.0192609 -1.0 0.02958850 1.0
10 30 0.0228423 0.4 0.0192612 -1,3  0,0258544 0.9
10s x 0.0228507 0.4 0,0192610 -1.5 0.0299007 1.0
i1z X 0.0228483 0.5 0.0192603 -t.,7 . 0.0268985 1.3
12 36 0.0228320 1,0 0.0192638 -2.6  0.0298833 2.2
123 38 0.0228238 1.5 0.0192628 -2.8  0.02988L4 4,2
13§ Lo 0.0228216 1.9  0.0192602 -2.6 0.0298782 742
14 42 0.0228252 1.9  0.0192582 -2.5 0.0298796 6.9
14§ G 0.0228277 7 1.9 0.0192593 -3.2  0.0298822 5.7
15+ 46 0.0228280 2.2 0.0192599 =2.9 0,0298828 6.0
16 48  0.0228312 2.1 0.,0192581 -3.6  0.,0258841 £.0
163 50 0.0228347 1.9 0.0192597 4.9  0,0208878 4.8
173 52 0.0228339 2.4 0.0192654 =26, 0.0258908 4.2
18 H 0.0228401 1.9  0.0192605 ~6.7  0.0298924 4.2
182 56 0.0228499 1.5 0.0192590 -5.9  0.0298950 3.3
195 58 0,0228554 1.5 0.0162570 -5.1  0.,0299019 3.1
20 60 0.0228630 1,3 0,0192567. -5 2.7



Conparison of double preclsion arnd single preclsion ermiitarce dziz.
31

= 0.245; &Y = ¢.010

y
Doubling Tire
Real Single Double
Ring Million Preclsion Precision Siogle Double
Time Turns R R Precision Precision
(min) i Y (days) (days)
2 & 0.0338259 0.,0335123 0.01 6.7
4 12 0.033%252  0,0335288 4.6 1.8
6 18 0.0335260 0.0335277 31, 7.1
8 24 0,0336286 0,0336262 6.7 50,
10 30 0.0336261  0,0338253 =50, 193,
12 38 0.0336251 0,0336253 =21, =67,
14 %) 0.0336246  0.033¢62461 -23. =35,
16 i 0.0336220  0.033%232 -10. -30,
18 sl 0.0336232  0.0336230 -2k, -39,
20 160 0.0336237 0.0336229 ~524 ~53.
Case B, Y, = 0.2k5 3 = 0.120; AY = 0,010
2 6 0.0298768  0.0298409 -0.9 0.3
& 12 0.0299107  0.0298374 0.7 -0.4%
6 18 0.0298781  0.0298419 -0,5 -2,5
8 24 0.0298811  ©0.0298550 -1.5 3.1
10 30 0.0298718  0.029854% ~1,2 0.9
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Flgure 1, Errors in Single Precision Calculation of F(x,y)

32



Figure 1A, Double Precision Repeatability Experiment., \Jx

Initial Conditions: X' = Y' = 0

v, = 0.245

&Y= 0,010
- X =Y = Ao, where A = 0,5, 1,0, 1.5, 2.0 ard where o= 0.C8165%mn,
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XMy Flgure 2, Enittznce staiistics for Case A 34
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Figure 3. Comparlson of x-, y- and R-emitiznce statistics for Case Ay 35
Y, = ‘)y = 0.245; 4AY = 0,010
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Figure 4, Comparison of x-, y-, arnd R-enittance statistics for

Ve = Yy =0.01617; sV = 0,010
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Figure 5. Average values of RMIT {rom Table I..
Case A, ‘)y = 0.245; AY = 0.010
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Flgure 6. Doubling times for R ‘emittance =

2 2
E:x + Ely
from Table I,
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Flgure 7. Rescnznce lineF up to 13th order which cross the area in tune space 39
vy = 0.245; 4 = 0,010

used by Cace A, vx
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igure 8, Summary of Table II, Case B.. \)x = 0.245; V. = 0.120; AV = &
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Figure 9

- 41
Figure 9, Lines up to ljth order which cross the area in tune space used by
Case B. Vv, = 0.245; »)y = 0,120;3 AY = 0,010
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Figure 10. Sumrary of doubling times in T2ble II. *

| Case B, »’x = 0,245, vy = 0.120; a&av= 0,010
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Figure 11, Single Precisicn Hepeatablliity Experiment,

43
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Figure 12, Definition of terms used in the emittance statistics,
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